If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+6v-6=0
a = 1; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·1·(-6)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*1}=\frac{-6-2\sqrt{15}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*1}=\frac{-6+2\sqrt{15}}{2} $
| 3x-31=-5(x+3) | | 2(x-3)=-6x+18 | | 20-10x=50+6x10 | | –8q−5=–9q | | 8u^2+8u-2=0 | | (10x-1)=31° | | (3x-10)=2x=115 | | 5x+12+3x+6=90 | | 6t^2+9t+3=0 | | 2u+30=-2(u-1) | | 7x-4=10x-4 | | –4−6y=–5y | | z=3•60 | | -1(5x-2)=(-x)+10 | | 0.2(x-3)=12 | | –9z=–8z+8 | | 6x+25+2x3=180 | | 14x+84=20x+180 | | 90+2x+15+×=180 | | 5x+16+3x+4=90 | | 3(2x+3)+3=30 | | 22−3m=4 | | -21+7x-3x=27 | | 6n=14=4n+6 | | -2/7=-9n-7/7 | | +133+4x=9x | | 9(x+8)=3(x+30) | | 9x-15+5x+29=180 | | -4x-3=5x+6 | | 52=w−29 | | 9x4=18+ | | n+130+130=180 |